
Inr. J. Hear Moss Tron& Vol. 24, No. 9. pp. 1457-1462. 1981. 0017 9310/81/091457 06 SOZ.CO/O 

Printed in Great Britain Pergamon Press Ltd. 

ESTIMATING THE SOLIDIFICATION/MELTING TIMES 
OF CYLINDRICALLY SYMMETRIC REGIONS 

V. R. VOLLER and M. CROSS 

Mineral Resources Research Center, University of Minnesota, 56 East River Road, Minneapolis MN 55455, 
U.S.A. 

(Receiued 18 December 1980 and in revised form 2 March 1981) 

Abstract-A simple, explicit algorithm previously developed to produce accurate solutions of phase change 
problems in one space dimension, is extended to cope with circular regions with spatially uniform boundary 
conditions. On study of numerically predicted results a single non-dimensional expression, which provides a 
prediction of the solidification/melting time of a circular cylinder, is derived. This expression is subsequently 
used to provide upper and lower bounds on sol~dification/melting times for general symmetric cylind~cally 

shaped regions with spatially uniform boundary conditions. 

NOMENCLATURE 

specific heat; 
percentage error spread (see Section 4) ; 
diameter of minor axis; 
enthalpy ; 
latent heat; 
radial position of phase change boundary; 
radial coordinate; 
radius of approximating cylinder (see Sec- 
tion 4); 
radius of lower bounding cylinder (see Sec- 
tion 4); 
radius of upper bounding cylinder (see Sec- 
tion 4); 
temperature ; 
phase change temperature ; 
fixed surface temperature; 
initial temperature ; 
time ; 
non-dimensional phase change time; 
density; 
non-dimensional variable. 

I. INTRODUCTION 

HEAT conduction problems involving a change of 
phase are usually solved by numerical methods. The 
major di~~ulty to overcome in generating a numerical 
solution is in the representation of the discontinuity of 
the temperature gradient at the phase change boun- 
dary. A popular way to avoid this difficulty involves 
the use of the enthalpy method [l--S]. Here the 
governing equations are reformulated in terms of the 
enthalpy, H (i.e. the sum of the sensible and latent 
heats). This removes the need to directly trace the 
position of the moving boundary and, hence, elim- 
inates the numerical problems associated with the 
discontinuity of the temperature gradient. 

Although two recent comprehensive reviews [9, lo] 
have cited enthalpy methods as the best approach for a 
wide variety of problems, numerically induced oscil- 
lations have been observed jT2, 1 l- 131 in the pre- 

dictions of the standard enthalpy methods. Recently, 
we [13,14] have proposed a simple, explicit technique 
for one-dimensional problems, based upon the en- 
thalpy method, which both eliminates the numerically 
induced oscillations and produces accurate predictions. 
Unfortunately, except in the cases of rectangular and 
circular regions, analysis of phase change problems in 
two-dimensional regions is not only complicated, but 
also there is no obvious method to assess the reliability 
of the predictions. The aim of this paper is to describe 
an extension to the authors one-dimensional method 
which provides a means to estimate upper and lower 
bounds to melting/solidification times for two- 
dimensional regions with cylindrical symmetry and 
spatially uniform boundary conditions. 

2. THE GOVERNING EQUATIONS AND NUMERICAL 
ALGORITHM 

Phase change problems in cylindrical two dimen- 
sional regions with radial symmetry may be form- 
ulated in terms of enthalpy as follows: 

where p is the density, K the thermal conductivity and 
T the temperature. The enthalpy is related to the 
temperature by 

H/c 

i 

H<cTm 
T= Tm cTm < H < cTm -t L (2) 

(H - LYc H 2 cTm f L 

where c is the specific heat, L is the latent heat of the 
phase change and Tm is the phase change temperature. 

Using central differences, the explicit form of the 
approximation to equation (1) is given by 

Hi+ ’ = H; + P[(l f 1/2i) TI+ I - 2Tj 

+ (1 - lj2i) Tj- ,], (i = 1, . . _, n) (3) 

where P = XAt/p(Ar)‘, At is the time step, Ar is the 
radial distance step, and Ti, Hi are the temperature 
and enthalpy, respectively, at the position r = ihr and 
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Fro. 1. The movement of a freezing (i.e. phase change) front 
through a one-dimensional discretized region. 

time t = jAt. At the point r = 0 (i.e. when i = 0) the 
above scheme becomes 

The basis of the one-dimensional linear algorithm 
for phase change problems that we have proposed [ 13, 
241 is to relate the numerical value of the enthalpy at a 
node to the position of the phase change boundary. 
For the majority of problems, unless the time step is 
large or the size step very small, as the boundary passes 
through a node its enthalpy value will remain in the 
range [cTm, cTm + L] for a number oftime steps. This 
time period may be identified as the time taken for the 
element of thickness Ax about the node i to undergo its 
phase change [i.e. for the boundary to move from (i - 
l/2) AX to (i + l/2) Ax, as shown in Fig. 11. Starting 
from this observation, the phase change boundary 
may be positioned on the node i whenever the nodal 
enthalpy, Hi = cTm + L/2. The idea of relating the 
phase change boundary position to the above nodal 
enthalpy value led to the development of a simple, yet 
accurate procedure to trace the boundary through a 
one-dimensional region. 

A similar procedure may be developed to trace the 
radial movement of a phase change front, R(t), of a 
circular region with spatially uniform boundary con- 
ditions (i.e. radially symmet~c). The time that the 
moving boundary reaches node i is evaluated as 
follows. Suppose (in a freezing problem) the nodal 
enthalpy as predicted by the numerical solution of 
equations (2)-(4) is such that H;‘+ ’ c: cTm + L/2 and 
Hi > cTm + L/2. Then the radial position of the phase 
change boundary will be R(&) = iAr where 

ti=(j+x)At (5) 

and X, which lies between 0 and 1, is evaluated by a 
linear interpolation in time, i.e. 

(L/2 + cTm - Hj) 
x= (#+I -ff_i:) . 

Although this algorithm has been shown to work 
well for truly one-dim~nsiona1 problems it should be 
established that it also works for cylindrical problems. 
To fulfill this objective a simple test problem is 
proposed where at time t = 0 the region r > a is in the 
liquid phase at its melting temperature Tm > 0. For t 
> 0 the surface r = a is maintained at zero tempera- 
ture so that the position, R(t), of the interface between 
the liquid and solid phases satisfies R(t) 2 a. If the 
thermal properties of the solid and liquid phases are 
taken as equal and the ratio L/c is large, then an 
approximate solution for R(t) is given by [16] 

2R(t)’ In [R(t),%] - R(t)* + a2 = y. (7) 

This solution is illustrated by the continuous line in 
Fig. 2 using the following thermal and physical 
properties a = 0.5 m, Tm = 10°C I< = 2W/m K, c = 
2.5 MJjkg K, p = 1 kg/m3, L = 100 MJ/kg. The 
corresponding numerical solution which was evalu- 
ated using At = 1 h and Ar = 0.125 m, is shown as 
the short dashed line in Fig. 2 and is close to the 
approximate analytic solution. The comparison is 
further improved for the numerical solution generated 
for the case L/c = 100 (i.e. the dot-dash line in Fig. 2). 
As such it would appear that the method proposed 
above provides accurate solutions to circular cylindrt- 
tally shaped regions with spatially uniform boundary 
conditions. At this point it should be noted that the 
interpolation given by equati,on (6) is linear, i.e. no 
radial effects are included. The results of the above test 
problem, however, indicate that this assumption does 
not greatly affect the accuracy of the proposed method. 
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FIG. 2. Comparison of approximate analytic and numeric 
solutions for freezing around a cylinder. 
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Table 1. Comparison of dimensionless solidification times as predicted by the numerical method and 
equation (12) 
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L* TZ Numerical Equation (12) t: 

2 0.2 0.663267 0.660 
2 1 0.731207 0.724 
2 2 0.79488 1 0.804 

20 0.2 5.18902 5.1870 
20 1 5.22983 5.215 
20 2 5.26785 5.25 
50 0.2 12.7078 12.732 
50 1 12.7854 12.70 
50 2 12.8623 12.66 

Dimensionless 
solidification time 

Difference (%) 

0.495 
0.995 

- 1.134 
0.039 
0.284 
0.340 

-0.19 
0.672 
1.598 

3. THE PHASE CHANGE TIME OF A t: = (0.14+0.085 T;) + (0.252 -0.0025 T,1) L*. 
CIRCULAR CYLINDER (12) 

For many practical problems involving a change of 
phase, the prime interest is to evaluate the solidifi- 
cation or melting time of the region. Consider the 
following solidification problem, at time t < 0 an 
infinitely long cylinder with a circular cross-section is 
at a uniform temperature T, > Tm the phase change 
temperature of the cylinder. At time t = 0 the surface of 
the cylinder is lowered to and fixed at a temperature 
Tw < Tm so that solidification begins. This problem 
can be described by equations (1) and (2) which can be 
written in the following non-dimensional form 

This approximation predicts solidification times 
within 1% of the numerical predictions, c.f. Table 1, 
when 

O<T,+12 

and 

2 I L* _< 50. 

Hence for a wide range of cases the solidification (or 
melting) time of a cylindrical region with circular 
cross-section and spatially uniform boundary con- 
ditions may be readily found on use of equations (11) 
and (12). aH* a=T* 

at*=-$T +;1;g O<r*_<l (8) 

where 

f- H* H* I 0 
T* 0 

I 

O<H* <L* 
H*-L* H* 2 L* 

with the boundary condition 

T* (0, t*) = - 1 

and the initial condition 

T* (r*, 0) = T,*. 

The dimensionless variables are defined by 

t* = Kc/R’ pc; r* = r/R 

(9) 

(104 

(lob) 

L* = 
L 

; H*= H 
c( Tm - Tw) c( Tm - Tw) (11) 

T* = (T-Tm)/(Tm-Tw) 

T,* = (T,* - Tm)/( Tm - Tw) 

where R is the radius of the circular cross-section. 
The numerical scheme outlined and verified above 

has been used to solve solidification problems of the 
type described by equations (8)-(10). The numerical 
results from this scheme indicate that the dimension- 
less solidification time t: for the circular cylinder may 
be approximated by the following expression, viz. 

4. APPLICATION TO GENERAL SYMMETRICALLY 
SHAPED CYLINDERS 

In a case where the cross-section of the cylinder is 
non-circular calculation of the solidification/melting 
time may be difficult. As a first step prediction, 
however, use of equation (12) may provide a reason- 
able estimate of this time. 

Important factors in deciding the phase change time 
of a symmetric cylindrical region are 

(a) its cross-sectional area, A ; 
(b) the ratio of the circumference to the cross- 

sectional area C/A; and 
(c) the shape of the cross-section. 

When the cylinder’s cross-section is long and thin, e.g. 
a long, thin ellipse or rectangle, a very reasonable 
estimate for the phase change time can be determined 
directly from a one-dimensional solution. As the cross- 
sectional shape of the cylinder approaches a circle, 
however, this one-dimensional approach will predict a 
phase change time which is greater than the true phase 
change time. On defining the minor axis, dm, of a cross- 
section of a symmetric cylinder to be the shortest 
possible straight line which passes through the cross- 
section’s center of gravity, a circle with radius r = dm/2 
will be completely contained within the cross section. 
The phase change time of a circular cylinder with 
cross-sectional radius dm/2 will therefore be shorter 
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than the phase change time of the original cylinder. On 
the other hand a circular cylinder with the same cross- 
sectional area as the original cylinder will take longer 
to undergo its phase change. This is because the ratio 
of circumference to area is a minimum for a circle. So a 

circular cylinder of diameter dm which fits inside the 

original cylinder solidifies or melts faster and a circular 
cylinder with the same cross-sectional area as the 

original cylinder takes longer to solidify or melt. 

Consider the following solidification problem. A 
long square shaped channel with cross-sectional area 
1 m2, contains liquid initially at 2°C. The walls of the 

channel are held fixed at - 10°C for times, t > 0, so 

that the liquid in the channel slowly solidifies. The 
phase change temperature is 0°C and the thermal 

properties of the material in the channel are as in 

section 2 above. A lower bound on the solidification 
time of the channel can be found on calculating the 

solidification time of a circular cylinder of radius 0.5 m, 

with the same boundary conditions and thermal 
properties as the channel, by equations (11) and (12). 
An upper bound on the channel’s solidification time is 

found on calculating the solidification time by equa- 
tions (11) and (12) of a circular cylinder with cross- 

sectional area 1 m ‘, i.e. a radius of 0.5642 m, and 

identical conditions to the channel. The upper and 

lower bounds on the solidification time of the square 
channel by use of the above approach are 128.5 h and 

101 h, respectively. 
A direct numerical solution for the freezing of the 

square channel was generated previously by the au- 
thors [13, 141 using a modification to the original 

algorithm. This solution predicts a solidification time 

of 119.4 h which, as expected, lies between the upper 

and lower bounds calculated above. 
Although the upper and lower bounds provide an 

indication of the solidification time, they are only 
accurate to within N 15%. A reasonable estimate for 

the solidification time may be evaluated by using an 

approximating circular cylinder whose radius is given 
by r. = (0.5 +0.5642)/2 = 0.5321 m. The predicted 

solidification time in this case is 114.3 h, which is 

within 5% of the time predicted by the direct solution 

of the two dimensional region. All the above results are 
summarized in Table 2. 

Use of the above method to calculate the solidifica- 

tion/melting time of a general symmetrically shaped 
cylinder in a large number ofcases may only provide a 

first order indication of the phase change time. The 
relative accuracy of the upper and lower bounds 
depends on the difference in the radii of the approx- 
imating cylinders. More precisely the ‘percentage 

error spread’, i.e. the sum of the percentage errors in 
lower and upper bounds. may be defined as 

where ru and r, are the radii of the upper and lower 

approximating cylinders and 

r, = (r, + r-,)/2. 

The value of E indicates the accuracy of using approx- 
imating cylinders for upper and lower bounds on the 

phase change time of a cylinder with non-circular 
cross-section. For the example of the square channel 

outlined above E = 24.1. When the cross-section is a 
pentagon with sides of 1 m E = 14.5, which indicates, 
in this case, that the method of ‘approximating cylin- 

ders’ will be more accurate than for the square. 

5. CONCLUSIOSS 

A modification to the enthalpy method proposed by 

the authors elsewhere [13, 141 has been extended to 
cope with cylindrical problems containing a circular 

cross-section and spatially uniform boundary con- 
ditions. After the study of numerically predicted 

results a single non-dimensional expression was de- 

rived which estimated the numerically predicted phase 
change time of a circular cylindrical region to an 
accuracy of 17:. This expression was then used to 
provide upper and lower bounds for the solidification 

times of symmetrically shaped cylinders with spatially 
uniform boundary conditions. The procedure was 
tested on a cylinder with a square cross-section for 
which adirect numerical solution was available. In this 

Table 2. Comparison of solidification times 

Solution 
type 

_____ 

Direct numeric solution 
of square channel, area = 1 m2 

Lower bound approximating 
circular cylinder, r, = 0.5 

Upper bound approximating 
circular cylinder, ru = 0.5642 

Averaged approximating 
circular cylinder, r, = (r, + rJ2 
=0.5321 

Solidification Difference from 
time (h) direct solution (I’,,) 

119.4 0 

101 15.4 

128.5 7.6 

114.3 4.5 
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case, the upper and lower bounds were within 15% of 
the solidification time predicted by the direct scheme. 
However, a simple refinement produced an estimate of 
the solidification which was within 5% of the solidifi- 
cation time predicted by the direct numerical scheme. 

For the square channel considered in this paper the 
procedure to determine upper and lower bounds on 
the solidification time proves crude. This is because the 
actual solidification time can be estimated with some 
confidence. The method outlined in this paper, how- 
ever, is not intended to be a rigorous approach to 
deriving a phase change time of a symmetric cylinder. 
It is intended more to be a quick, pragmatic means of 
estimating the phase change time of a cylindrical 
region where other methods of analysis cannot be 
readily used. For problems where the cross-section of 
the cylinder is not a simple shape, then, depending on 
the accuracy required, the procedure outlined in this 
paper could prove to be a useful tool in estimating the 
nature of freezing and melting in symmetrically shaped 
cylindrical regions with spatially uniform boundary 
conditions. 
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ESTIMATION DES TEMPS DE SOLIDIFICATION ET DE FUSION DE DOMAINES A 
SYMETRIE CYLINDRIQUE 

RbumC ~ Un algorithme explicite et simple pr&demment dCveloppd pour fournir des solutions pricises 
des problemes de changement de phase dans un espace monodimensionnel est ttendu pour couvrir les 
domaines circulaires avec des conditions aux limites spatialement uniformes. On obtient une expression 
unique adimensionnelle qui fournit I’estimation du temps de solidification ou de fusion d’un cylindre 
circulaire. Cette expression est utilisk pour avoir les limites sup&rieure et infkrieure des temps de 
solidification/fusion pour des domaines B sym&rie cylindrique avec des conditions aux limites spatialement 

uniformes. 

ABSCHATZUNG DER ERSTARRUNGS- BZW. SCHMELZZEITEN VON 
ROTATIONSSYMMETRISCHEN GEBIETEN 

Zusammenfassung-Ein vor kurzem entwickelter, expliziter Algorithmus, der genaue Lasungen von 
eindimensionalen Phasena’nderungsproblemen liefert, wurde fiir rotationssymmetrische Gebiete mit rlumlich 
gleichfiirmigen Randbedingungen erweitert. Aufgrund einer Analogie numerisch berechneter Werte wurde 
ein einfacher dimensionsloser Ausdruck entwickelt, der die Berechnung der Erstarrungs-/Schmelzzeiten 
eines Kreiszylinders zuliiBt. Dieser Austruck wird sp8ter dazu benutzt, die Unter- und Obergrenzen von 
Erstarrungs- bzw. Schmelzzeiten fiir allgemeine rotationssymmetrische Gebiete mit rliumlich gleichfiirmigen 

Randbedingungen anzugeben. 
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PAWET BPEMEHM 3ATBEPAEBAHWR M FUIABJ-IEHMII 
CMMMETPMYHbIX OEJIACTEI? 

AHHOTPUII~-~~~~LUIO~~HH~I~ paHee II~OCTO~? iinropki~~ B ~k1~0ii @opMe nnK ~09H0r0 peluewin 

3ana'( c @a30BbIMH H3MeHeHHRMH B OnHOM npOCTpaHCTBeHHOM H3MepeHHi4 IIpHMeHeH K CnyqaIO 

KpyrOBbIX o6nacTeii C IIpOCTpaHCTBeHHO OnHOpOnHbIMH rpaHU'iHbIMH yCnOBWIMk4. B pe3ynbTLlTe 

'iHCJIeHHOr0 WCCnenOBaHHR BbIBeReHO 6e3pasMepHoe BbIpaxeHkie. KOTOpOe JlaeT 803MOEHOCTb paC- 

cwTblBaTb epeh4n 3aTeepneeaHwR wne nnasneHw Kpyrnoro uenwHnpa. 3aTeM c noMoIubi0 naHHor0 

eblpameHkin 0npeneneHbI BepxHnr w HH~HIIR rpaH5iubl epeMeHa 3aTeepaenaHsn u nnaBneHwn cw.we- 

TpH'IHbIX o6nacTe8 LWIkiHnpH'ieCKOii KOH@irypaULikiC yKa3aHHbIMW BbIUle rPdHH',HbIMHyCnOBWIIMH. 


